Click the icon to view galaxies of the Messier catalog
>>Links; >>References; >>Galaxy Clusters
The icon shows M51, the Whirlpool Galaxy.
Galaxies are large systems of stars and interstellar matter, typically containing several million to some trillion stars, of masses between several million and several trillion times that of our Sun, of an extension of a few thousands to several 100,000s light years, typically separated by millions of light years distance. They come in a variety of flavors: Spiral, lenticular, elliptical and irregular. Besides simple stars, they typically contain various types of star clusters and nebulae.
We live in a giant spiral galaxy, the Milky Way Galaxy, of 100,000 light years diameter and a mass of roughly a trillion solar masses. The nearest dwarf galaxies, satellites of the Milky Way, are only a few 100,000 light years distant, while the nearest giant neighbor, the Andromeda Galaxy, also a spiral, is about 2-3 million light years distant.
Spiral
Our sun is one of several 100 billion stars in a spiral galaxy, the
Milky Way.
Lenticular (S0)
Elliptical
However, for some ellipticals, small disk components have been discovered, so
that they may be representatives of one end of a common scheme of galaxy forms
which includes the disk galaxies.
Irregular
The first known galaxies were longly known before their nature as "island universes" came to light - this fact was finally proven only in 1923 by Edwin Powell Hubble, when he found Cepheid variable stars in the Andromeda Galaxy M31. Ancient observers have known the Milky Way and - on the Southern Hemisphere - the Large and the Small Magellanic Cloud since prehistoric times, and there are speculations that also the Andromeda Galaxy M31 may have been observed and recorded as a nebulous patch by anonymous Babylonian observers around 1,300 B.C.. This object was certainly known to medevial Persian astronomers before 905 A.D., and cataloged and described by Persian astronomer Al Sufi in 964 A.D. All other galaxies have been discovered only after the invention of the telescope: The Triangulum Galaxy M33 was first seen by Italian Priest astronomer G.B. Hodierna before 1654. Next, French astronomer Legentil discovered M32, a companion of the Andromeda Galaxy, in 1749, and his compatriot Abbé Lacaille found M83 in 1752, the first galaxy beyond the Local Group to be discovered. These six were all external galaxies to be known, before Charles Messier started to survey the sky for comets and "nebulae." His first original discovery of a galaxy, M49, a giant elliptical member of the Virgo Cluster, occurred in 1771. The Messier Catalog in his modern form contains 40 galaxies, all but the two Magellanic Clouds that have been found up to 1782. Starting in 1783, William Herschel found and cataloged over 2,500 star clusters and "nebulae" up to 1802, 2,143 of them actually galaxies. J.L.E. Dreyer's NGC catalog contains 6,029 (about 75.9%), and his IC catalog another 3,971 galaxies (about 73.7%).
From their appearance, galaxies are classified in types as given above, as spiral, lenticular, elliptical, and irregular galaxies, where spirals may be further classified for the presence of a bar (S: spirals, SAB: Intermediate, SB: Barred spirals). More precisely, ellipticals are sub-classified for ellipticity from E7 (strongly elongated) to E0 (circular), and spirals for prominence of bulge versus spiral arms from Sa (or SABa, SBa) to Sc or Sd. This so-called Hubble Classification Scheme can well be illustrated by Messier's galaxies:
The most massive galaxies are giants which are a million times more massive than the lightest: Their mass range is from at most some million times that of our Sun in case of the smallest dwarfs, to several trillion solar masses in case of giants like M87 or M77. Accordingly, the number of stars in them varies in the same range.
The linear size of galaxies also scatters, ranging from small dwarfs of few thousands of light years diameter (like M32) to respectable several 100,000 light years. Among the biggest Messier galaxies are the Andromeda galaxy M31 and the bright active Seyfert II galaxy M77.
Our Milky Way Galaxy, a spiral galaxy, is among the massive and big galaxies with at least 250 billion solar masses (there are hints that the total mass may even be as large as 750 billion to 1 trillion times that of the Sun) and a disk diameter of 100,000 light years.
Besides very many individual stars, most galaxies contain the following typical objects:
Some galactic nuclei are remarkably distinguished from the average: These so-called Active Galactic Nuclei (AGNs) are intensive sources of light of all wavelengths from radio to X-rays. The activities seen in the AGNs are caused by gaseous matter falling into, and interacting with, the supermassive central objects mentioned above, according to the current consensus of most researchers. Sometimes, the spectra of these nuclei indicate enormous gaseous masses in rapid motion; galaxies with such a nucleus are called Seyfert galaxies (for their discoverer, Karl Seyfert). M77 is the brightest Seyfert galaxy in the sky. Few galaxies have even more exotic nuclei, which are extremely compact and extremely bright, outshining their whole parent galaxy; these are called quasars (an acronym for QUAsi-StellAR objects). From their properties, quasars resemble extremely active Seyfert galaxy nuclei. However, quasars are so rare and the nearest is so remote that the brightest of them, 3C273, about 2 billion lightyears away in the constellation Virgo, is only of magnitude 13.7, and none of them is in Messier's or even in the NGC or IC catalog.
Occasionally, at irregular intervals given by chance, in any type of galaxies, a supernova occurs: This is a star suddenly brightning to a high luminosity which may well outshine the whole galaxy; the maximal absolute magnitude of a supernova may well reach -19 to -20 magnitudes. This remarkable phenomenon has attracted the attention of many astronomers (equally both professionals and amateurs), who observe galaxies regularly as they "hunt" supernovae. Supernovae have been observed in several Messier catalog galaxies.
According to our current scientific understanding, at least most galaxies (including our Milky Way and those in Messier's catalog) have formed during a comparatively short period, at about the same time, within the first billion years after the universe started to expand, from an initial hot state. Thus they are all almost as old as the universe itself, currently thought to be about 10-15 billion years. It is thought that galaxy formation started when primordial clouds of gaseous matter (hydrogen and helium), the proto-galaxies, were singled out and started to collapse by their own gravity. According to computer simulations, the variety of galaxy forms results from different initial parameters of the proto-galaxies such as the amount of (initial) angular momentum, as well as their later evolution in their environments, such as interaction with other neighboring galaxies.
Messier's galaxies are not deitributed equally across the sky, but can be grouped into a large group of Northern Spring/Southern Fall, and a smaller Northern Fall/Southern Spring group:
Special observing Guides:
Textbooks:
Galaxy Clusters
Last Modification: September 24, 2007